INDEPENDENCE OF l IN LAFFORGUE ’ S THEOREM
نویسنده
چکیده
Let X be a smooth curve over a finite field of characteristic p , let l 6= p be a prime number, and let L be an irreducible lisse Ql -sheaf on X whose determinant is of finite order. By a theorem of L. Lafforgue, for each prime number l 6= p , there exists an irreducible lisse Ql′ -sheaf L ′ on X which is compatible with L , in the sense that at every closed point x of X , the characteristic polynomials of Frobenius at x for L and L are equal. We prove an “independence of l ” assertion on the fields of definition of these irreducible l -adic sheaves L : namely, that there exists a number field F such that for any prime number l 6= p , the Ql′ -sheaf L above is defined over the completion of F at one of its l -adic places.
منابع مشابه
Fixed point theorem for non-self mappings and its applications in the modular space
In this paper, based on [A. Razani, V. Rako$check{c}$evi$acute{c}$ and Z. Goodarzi, Nonself mappings in modular spaces and common fixed point theorems, Cent. Eur. J. Math. 2 (2010) 357-366.] a fixed point theorem for non-self contraction mapping $T$ in the modular space $X_rho$ is presented. Moreover, we study a new version of Krasnoseleskii's fixed point theorem for $S+T$, where $T$ is a cont...
متن کاملA COMMON FIXED POINT THEOREM FOR $psi$-WEAKLY COMMUTING MAPS IN L-FUZZY METRIC SPACES
In this paper, a common fixed point theorem for $psi$-weakly commuting maps in L-fuzzy metric spaces is proved.
متن کاملAn analog of Titchmarsh's theorem for the Bessel transform in the space $mathrm{L}_{p,alpha}(mathbb{R}_{+})$
Using a Bessel generalized translation, we obtain an analog of Titchmarsh's theorem for the Bessel transform for functions satisfying the Lipschitz condition in the space $mathrm{L}_{p,alpha}(mathbb{R}_{+})$, where $alpha>-frac{1}{2}$ and $1
متن کاملA strong convergence theorem for solutions of zero point problems and fixed point problems
Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated. A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces.
متن کاملA new characterization for Meir-Keeler condensing operators and its applications
Darbo's fixed point theorem and its generalizations play a crucial role in the existence of solutions in integral equations. Meir-Keeler condensing operators is a generalization of Darbo's fixed point theorem and most of other generalizations are a special case of this result. In recent years, some authors applied these generalizations to solve several special integral equations and some of the...
متن کامل